Tumor Molecule Discovered That Causes Spread of #PancreaticCancer

A single molecule switches on metastasis, or spread, in pancreas cancers, reports new research led by scientists at Fred Hutchinson Cancer Research Center. The researchers predict that testing for this molecule, called RUNX3, could soon help oncologists choose the most appropriate treatments based on the metastatic potential of each patient’s disease.

“We’re defining a readout that may help doctors in their approach to treatment of patients who have pancreatic cancer,” said Dr. Martin “Marty” Whittle, a postdoctoral researcher in the lab of Dr. Sunil Hingorani and first author on the paper, which was published online today in the journal Cell. “The gene that we identified can be used to give some insight as to whether a patient’s tumor is more likely to grow locally or metastasize.”

RUNX3, the researchers found, controls the activation of numerous genes involved in metastasis in a mouse model, triggering cancer cells to migrate to other parts of the body and turning on genes that help those metastatic cells take root and thrive once they invade distant tissues.

“It’s extraordinary — it seems to control an entire metastatic program,” said Hingorani, the senior researcher on the study and a physician-scientist at Fred Hutch who specializes in pancreatic cancer. “RUNX3 serves to both expel the seed and prepare the soil.”

Pancreatic cancer has the highest metastatic drive of any malignancy, Hingorani said. By the time they are diagnosed, most pancreas cancer patients already have either metastatic disease or tumors that have grown too much to be surgically removed. Even when patients’ tumors are contained, making them eligible for surgery or focused radiation, many of them end up dying of metastatic cancer anyway — because their apparently localized tumors had nevertheless already started spreading to other sites.

For this reason, oncologists often treat patients who have early-stage pancreas tumors with chemotherapy before surgery in the hopes of killing off any distant microscopic metastases and prolonging life. But in the time it takes for a few rounds of chemo, almost a third of surgically removable tumors grow too large to be eligible for surgery, a “devastating” outcome, said Hingorani, which slashes patients’ average survival time from two years for a removable tumor to less than 11 months for a non-operable tumor.

By predicting a tumor’s metastatic behavior, doctors could choose the type of treatment that gives their patients the best chance at the longest survival time, Hingorani said.

“Even as we hope to develop more rational and targeted therapies for pancreas cancer, we can and must more intelligently apply the treatment modalities we have now,” he said. “And understanding how and when to use chemotherapy and radiation in the ideal context has the potential to impact patient survival and quality of life in the near term.”

With the caveat that they still must be validated in humans, Hingorani believes that his team’s findings will do just this.

“I haven’t found a compelling explanation yet for the unusual metastatic drive of pancreas cancer, and certainly not one that would reconcile some of the paradoxes that exist both in the fundamental biology but also in treatment response in patients,” Hingorani said. “So for us, the thing that, on one hand, was worth the many years we spent studying it and why we finally felt ready to communicate it to the world, is that it helps us understand both the biology of the disease and ― most excitingly I think ― it might soon influence what we do in the clinic.”

(click here to continue reading this article)

*credit verbatim via http://www.fredhutch.org*

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s